One of the major challenges of the renewable energy transition is to supply energy even in the absence of sunlight. Hydrogen production by splitting water with the help of sunlight could offer a solution. Hydrogen is a good energy storage medium, and can be used in many ways. However, catalysts are needed to split water. Platinum is often used, but it is rare and expensive. Researchers therefore seek more economical alternatives. Now, a team headed by Dr. Tristan Petit from the HZB, together with colleagues led by Prof. Bin Zhang from Tianjin University, Tianjin, China, has made important progress using a well-known class of metal-free photocatalysts.
Petit and his team investigated a series of these PCN samples at BESSY II. "We were able to determine which amino and oxygenated groups had been deposited in the pores," says Ph.D. student Jian Ren, co-first author of the publication. The researchers analysed how specific amino groups pull electrons to themselves, a particularly favourable property for splitting water, and how new oxygen-based defects were formed.
When combined with nickel as a co-catalyst, those samples of nanostructured PCN actually exhibited record-breaking efficiency, 11 times that of normal PCN under visible light irradiation.
"This demonstrates that PCN is an interesting potential catalyst for solar-to-hydrogen production, approaching the efficiency of inorganic catalysts," says Petit, who is a Volkswagen Foundation Freigeist Fellow. "Furthermore, this work also shows that soft X-ray spectroscopies are essential tools to unravel possible catalytically active sites on photocatalysts."
Explore further: Ultrathin black phosphorus for solar-driven hydrogen economy
More information: Nannan Meng et al, Engineering oxygen-containing and amino groups into two-dimensional atomically-thin porous polymeric carbon nitrogen for enhanced photocatalytic hydrogen production, Energy & Environmental Science (2018). DOI: 10.1039/C7EE03592F
Journal reference: Energy & Environmental Science