基于集成模块结构的环形柔性热电器件 npj Flexible Electronics
时间:20/02/21

论文标题:Annular flexible thermoelectric devices with integrated-module architecture

期刊:npj Flexible Electronics

作者:Dawei Qu, Xuan Huanget.al

发表时间:2020/01/29

论文标签:Energy science and technology,Materials science

数字识别码:10.1038/s41528-020-0064-2


有机和有机/无机复合热电材料及其柔性器件是近年来的新兴研究热点之一。相比而言,柔性器件的研究尚处于初级阶段,有很多难题急需解决。例如:针对特定应用环境如何发展新型组装设计策略以提高柔性器件的热电性能,是目前面临的挑战之一。2020129日,深圳大学特聘教授陈光明课题组与北京服装学院李昕教授和国家纳米科学中心王汉夫副研究员共同合作,在npj Flexible Electronics上发表题为“Annular Flexible Thermoelectric Devices with Integrated-Module Architecture”的研究。

该研究针对输运热流体的环形管道等应用背景,提出了一种具有集成模块结构的环形柔性热电器件设计思路。首先采用串联法,将多组p-型和n-型单壁碳纳米管(SWCNT)薄膜组装成模块,然后将此模块折叠;将多个折叠后的热电模块串联,弯曲成一定直径的环形器件后,将两端紧密扣合(参见图1)。文中详细研究了p-型和n-型薄膜基元的尺寸、p-n对的对数、模块的数量和施加温差等因素对于柔性器件输出热电性能的影响。

具有集成模块结构的环形柔性热电器件结构示意图


在此基础上,将该环形柔性集成结构模块紧密贴在盛有热水的烧杯外表面。结果表明,向烧杯中加入60oC热水后,具有集成模块结构器件(由8个模块串联,每个模块由3组尺寸为2´2cm2p-型和n-型薄膜基元组成)的热电性能(输出功率12.37mW)远高于传统单层薄膜串联器件1.74mW(参见图2)。

该研究是针对应用背景发展高性能柔性热电器件组装策略的一个初步尝试,集成模块结构有利于单位应用面积上的高热电输出性能,而环形结构适用于输运热流体的管道等应用场合,该结构设计对于柔性热电器件和柔性电子学的发展具有重要意义。

具有a集成模块结构或b单层薄膜结构的环形柔性热电器件制备过程示意图及其(cd)应用实例

摘要:Organic and composite thermoelectric (TE) materials have witnessed explosive developments in recent years. Design strategy of their flexible devices is vital to achieve high performance and suit various application environments. Here, we propose a design strategy of annular flexible TE devices with integrated-module architecture, where the independent modules made up of alternatively connected p-n couples are connected in series, and then rounded head-to-tail into annular configuration. The achieved devices can not only save plenty of space owing to their highly integrated structure design, but also be directly mounted on cylindrical objects (like pipes) to suit versatile applications. More importantly, the annular TE devices display excellent performances, superior to most previous work and the traditional serial single-layer film structure. For example, the annular device with eight modules consisting of three p-n couples reveals an output power of 12.37 μW at a temperature gradient of 18K, much higher than that of the corresponding single-layer film structure (1.74 μW). The integration process is simple and easy to scale up. This architecture design strategy will greatly speed up the TE applications and benefit the research of organic and composite TE materials.


0
相关文章
相关留言
写留言...
微信公众号
长按二维码关注"米格实验室"微信公众号