“太空篱笆”是由多个S波段雷达构成的地基系统,大大增加了美国太空监视网络的能力。
“太空篱笆”可以提供很高的灵敏度、覆盖范围和跟踪精度,并有能力探测、追踪和记录低轨、中轨和地球同步轨道上的小型目标,有助于完成关键太空任务。“太空篱笆”探测、追踪和记录地球轨道上成千上万的卫星和残骸的能力将使空间态势感知技术发生巨大变革。
“太空篱笆”有两个需要少量人工操作的雷达站点,如图2所示。这些雷达站点可以确保探测到低轨目标,然后再通过位于阿拉巴马州的亨茨维尔的运营中心进行汇总。
图2 “太空篱笆”由两个雷达构成,一个位于赤道附近的夸贾林环礁,另一个选址位于西澳大利亚。
首个在夸贾林环礁的雷达将提供一个由成千上万个雷达波束构成的持续监视“篱笆”,这些波束可以覆盖低轨。随着地球自转,这个“篱笆”可以扫视环绕地球的太空,从而能够确保探测到卫星和轨道残骸。
为了实现高质量的轨道估算,该雷达用专用波束对目标进行长时间的追踪。“太空篱笆”还可以根据任务要求对中轨和地球同步轨道等更高轨道上的目标进行搜寻。第二个雷达站点将会补充第一个站点的的低轨覆盖范围,并且能够完成中轨和地球同步轨道上的任务。
如图3a所示,每个雷达站点由相距很近但各自独立的发射和接收相控阵天线、电源和冷却系统组成。发射阵列包含36000个单元,接收阵列包含86000个单元,两者的天线罩材料均为低损耗的凯芙拉合成纤维。
两个阵列均通过公共服务大楼来供电和冷却,数据处理和控制则通过工作大楼中的商业现成处理设备来进行。发射和接收天线均通过校标塔上的喇叭天线发射或接收测试信号来进行校准。
为了提高可用性和降低生命周期内的维护成本,这两个超大型相控阵进行了优化。为了探测小目标,发射通道采用氮化镓高功率放大器实现前所未有的灵敏度。接收阵列采用阵元级数字波束形成(DBF),可以在任意方向同时实现成千上万个波束。
图3 (a)“太空篱笆”雷达站点 (b)发射阵列剖面图(c)雷达发射线性可替换单元(LRU)剖面图
这使得系统在保证覆盖低轨监视范围的同时,还可以追踪其他轨道的成百上千个目标或者覆盖用户指定的监视区域。发射和接收阵列口面垂直朝上,并于外围建筑集成为一体(如图3b中的剖面图所示)。
雷达电子设备安装在一个带液冷板的可扩展装置中,瓦片式辐射器位于冷板表面,而数字发射和接收线性可替换单元(LRU)在侧面。每一个LRU都集成了供8个辐射单元使用的数字波形发生器、上变频和高功率氮化镓放大器。
LRU位于冷板侧面可以使氮化镓高功率放大器有一个有效和直接的散热通道。为了提高系统有效利用率,LRU位于阵列下方,可以在1.5分钟内完成拆卸和替换且补中断工作。
氮化镓高功率放大器是“太空篱笆”的一项关键技术。与其它技术相比,在规定的尺寸和灵敏度要求下,高输出功率的氮化镓减少了发射单元个数,从而降低了总的生产成本。
氮化镓的高效率也降低了系统功耗和发热量,从而降低了工作成本。为了有效地覆盖低轨,并以地球同步轨道为目标,而且要在探测后返回足够的能量,需要加长发射脉宽。以前的技术,例如GaAs和Si BJT,在所需的输出功率下并不能达到如此大的脉宽。
结合接收阵列中的阵元级DBF技术,发射阵列中氮化镓的大脉宽特性极大提高了雷达的有效利用时间。“太空篱笆”接收阵列中的每个单元都接有一个接收机,这个接收机将接收到的信号数字化,这与子阵级的DBF技术不同,子阵级的DBF系统为了减少接收机的个数,是将多个单元的微波信号合成一路之后在进行数字化。
在阵元级的DBF系统中,波束可以在阵列所关注的任意位置形成,而子阵级的DBF方式会限制数字形成波束的空域,因为它需要改变模拟移相器来将一个雷达事件的覆盖空域切换到下一个(图4a)。
“太空篱笆”利用其灵活性和频率复用功能可以在接收频带内同时形成成千上万个波束(图4b),这使本来需要依次实现的功能可以在同一时间实现,从而降低了阵列尺寸、相关的制造成本和工作成本。为了得到连续的、机械枪似的发射信号序列有必要使用氮化镓高功率放大器,相比其他信号,这种信号发射时间更长、占空比更大(图4c)。
图4 (a)在单元级的DBF系统中,波束可以在阵列所关注的任意位置形成,而子阵级的DBF方式会限制数字形成波束的空域 (b)频率复用功能可以在接收频带内同时形成成千上万个波束,这可以使很多功能在同一时间实现 (c)氮化镓技术是唯一可以获得机械枪似的发射信号序列的技术,这种信号发射时间长、占空比大。
2007年,在“太空篱笆”概念开发之初,洛克希德・马丁公司举债进行了一个独立研究与发展项目,这个项目是为了使氮化镓在雷达领域得到充分发展。在“太空篱笆”的开发过程中,氮化镓的优化使用提高了系统效率、降低了工作成本。
洛克希德・马丁公司以开放制造理念与两个供应商合作开发氮化镓技术,这两个供应商都成功研制出了“太空篱笆”发射LRU中的氮化镓模块并测试成功。采用多个供应商降低了项目风险,并且可以通过竞争机制来降低制造成本。
由于“太空篱笆”阵列规模大,所需氮化镓器件数量多,所以为了降低维护成本就必须实现高可靠性。为了确保技术成熟度,洛克希德・马丁公司对“太空篱笆”氮化镓放大器分别在模块级、发射LRU级和阵列级进行了测试。
经过了多年充分的测试(大于5000小时的寿命试验,包括加速寿命试验),该技术被认为具有很高的可靠性,为“太空篱笆”计划的实施奠定了坚实的基础。
图5 “太空篱笆”原理样机:(a)天线架设 (b)任务操作中心(c)关键设计场景演示
从2011年起,洛克希德・马丁公司逐步研制出了一个端到端系统原理样机,该样机在按比例缩小的阵列中采用了包括氮化镓和单元级DBF技术。美国空军在2015年的技术成熟度评估中采用了该样机系统的数据,结果显示其技术成熟度水平和制造成熟度水平均达到了7级。
2016年1月,最终的硬件产品在新泽西州莫尔斯顿的集成实验基地进行硬件/软件集成/维护训练和验证实验,该试验基地将会对之后在夸贾林环礁上的1号雷达站点的集成提供远程支持。
来源:雷达通信电子战